
Journal of Statistical Physics � 2244

Journal of Statistical Physics, Vol. 94, Nos. 1�2, 1999

Mutual Annihilation of Two Diffusing Particles in
One- and Two-Dimensional Lattices

Claude Aslangul1

Received March 17, 1998; final August 24, 1998

The probabilistic dynamics of a pair of particles which can mutually annihilate
in the course of their random walk on a lattice is considered and analytically
found for d=1 and d=2. In view of available recent experiments achieved on
the femtosecond scale, emphasis is put on the necessity of a full continuous-time,
discrete-space solution at all times. Quantities of physical interest are calculated
at any time, including the total pair survival probability N(t) and the two-
particle correlation function. As a by-product, the lattice version allows for a
precise regularization of the continuous-space framework, which is ill-conditionned
for d�2; this being done, formal generalization to any real dimensionality can
be straightforwardly performed.

KEY WORDS: Random walks; low-dimensional systems.

I. INTRODUCTION

Recent experiments(1) on polydiacetylene (PDA) chains (d=1) immersed
in their single crystal monomer matrix have shed light on the dynamics of
a pair of triplet excitations in long isolated organic low dimensional
polymers. Comparison of experimental data with the results of a theoretical
model built for purpose also lead to explicit numerical values for the hopping
terms and for the annihilation rate by triplet fusion. Aside from allowing
the apparently first determination of these physical quantities of interest,
good agreement between experiments and the outcomes of a diffusive
theoretical model allows to conclude that, for reasons to be more
thoroughly investigated, the actual motion of the triplets is indeed diffusive;
let us remind that in a rigid perfect crystal of any dimensionality, quantum
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coherence entails that, on the contrary, the motion is purely coherent,
characterized by a mean square displacement increasing as t2. Since the
PDA chains are of rather good quality on a structural level, it seems nearly
obvious that the rapid relaxation of quantum coherence mainly results from
strong exciton-phonon coupling, all the more since many low-frequency
degrees of freedom are available.

Obviously enough, the present problem has close connections with the
simpler one of a single brownian particle in the presence of an imperfectly
absorbing barrier. Indeed, starting from the lattice calculations and taking
the limit of continuous space allow to display the relations (see Section IV
for details) between the present problem and the diffusion of a (fictitious)
particle subjected to an imperfectly absorbing barrier, (2, 3) a problem which
arises in various contexts and has been considered many times in the
past.(4�9) All these studies use the space-continuum framework; although
this is a worthwhile description on a macroscopic level, such as the one
which is physically relevant for, e.g., propagation of light in living tissues, (9)

it turns out to be inapropriate in view of the above-mentioned experiments
on PDA chains: when femtosecond experiments are achieved, results
obtained in the continuum simply cannot account for experimental results
and the full solution at any time in a continuous time, discrete space,
framework is required. The shortcomings of the continuous framework
stand in two points: (i) the initial decay is quasi-exponential, for obvious
physical reasons, since the two triplets (initially created on the same site by
rapid internal conversion) annihilate at a constant rate on a time-scale
short as compared to the diffusion time; the continuous description is
unable to reproduce such a feature��it yields an infinite initial slope, which
useless for experimentalists. (ii) due to the high-time resolution of
experiments, the ``transient'' dynamics covers nearly the entire experimental
range, so that the asymptotic regimes, which indeed coincide in both lattice
and continuum frameworks, are of very little interest. More crudely stated,
it can be said that the continuous description is here simply wrong in view
of the experimental data obtained with a high time-resolution, which
clearly exhibits linear decay at short times and reveal the whole dynamics
from which much can be learned. Only the lattice description given below
is able to fit with experimental outcomes and is able to reprodure the
observed decay over seven decades (see Fig. 1).

The aim of this paper is thus to present in details the exact solution
at all times of the simple lattice model used previously to understand the
experiments on PDA chains and to extend it in two dimensions. Up to my
knowledge, the lattice results contained in the present paper do not appear
in previous works. As done below, the full solution is achieved when the
two-particle distribution probability is obtained, in one or another

220 Aslangul



File: 822J 224403 . By:XX . Date:20:11:98 . Time:07:19 LOP8M. V8.B. Page 01:01
Codes: 2118 Signs: 1712 . Length: 44 pic 2 pts, 186 mm

Fig. 1. Comparison between experimental (circles) and theoretical results (solid line),
Eq. (2.10), for the polydiacetylene known as BCMU, at 20 K. The fit yields explicit numerical
values for the annihilation time A&1 and the diffusion time W&1, both being of the order of
a few picoseconds.

representation. From this, physically relevant quantities can be calculated
such as the total triplet population, N(t), the correlations between the
motions of the particles and the marginal (reduced) one-body distributions.

As well-known,(10) problems formulated in discrete space are more dif-
ficult to analyze than their space continuous versions, when the latter exist.
By nature, lattice problems are less ``universal'' than continuous ones in the
sense that most results obtained in such a framework usually depend on
microscopic details such as the lattice structure.(11) On the other hand,
working on a lattice is here the most natural approach on physical
grounds, and is even a theoretical necessity when no continuous limit
exists; an example of such a situation is the pure growth problem, equiv-
alent to a directed walk, for which the continuous limit of the master equa-
tion generates a purely mechanical Liouville equation, in which diffusive
effects have disappeared.(12) When the continuous limit exists, it can be
expected on physical grounds that both versions provide essentially the
same results in the long time limit, when most of the microscopic details
become irrelevant. On the other hand, the lattice version is required for
physical purposes since, due to ultra-violet divergencies, the continuous
approximation is ill-conditionned for d�2.
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Clearly, the dimensionality d plays a major role in the present situa-
tion, as it does in the famous Polya� problem.(13�15) Once created on the
same site due to rapid internal conversion following high excitation, the
two triplets undergo a random walk and can annihilate each other when,
in the course of time, their trajectories meet again. This fact implies close
connection with the Polya� 's results: for d=1 and d=2, a single random
walker goes back to its starting point with probability one. As contrasted,
for d=3, the return probability is less than one, its precise value depending
on microscopic details such as the lattice structure.(11)

It is thus expected that for one- and two-dimensional organic
polymers of the type considered, the triplet pair population N(t) will even-
tually decay to zero at infinite times, faster and faster as the dimensionality
is lowered. Indeed, asymptotical analysis of the exact expression of N(t)
found below at any time yields the characteristic decays t&1�2 for d=1 and
(ln t)&1 for d=2. The exact expressions clearly show that, \d, the
asymptotic regime is realized only at very large times. Obviously, the
vanishing exponent for d=2 is specific of a marginal case.

Eventually, the space continuous limit will be analyzed for complete-
ness. Not surprinsingly, this limit is much simpler and, in addition, allows
formally to investigate any real dimensionality d�0, provided proper
regularizations are done for d�2. In such a simplified framework, the
problem can be solved in two steps by analyzing first a single-particle
problem (in the center-of-mass frame), using standard methods for the
brownian motion of a fictitious particle in the presence of an imperfect
absorbing barrier. This does not mean that the present problem reduces to
a single-particle one; indeed, the center-of-mass itself has a diffusive
motion, which contributes to the spreading of the density of probability.
Such a feature is illustrated by the fact that the two-body probability is not
the product of two one-particle densities, a trivial consequence of the fact
that the annihilation process, as a true interaction, definitely induces
correlations between the motions of the two particles. Thus, it will be
recovered that, for any real d>2, N(t) converges toward a finite value N�

at infinite times, N� being closer and closer to one as the dimensionality
is increased. The trivial zero-dimensional case will even be recovered by
extrapolating the general results to d=0, producing a plain exponential
decay as it must.

II. THE ONE-DIMENSIONAL CASE

The basic assumptions of the lattice model are as follows:

(i) at some time (t=0), a pair of (triplet) excitations is created on
a given lattice site (labelled n=0 for d=1). Physically, this

222 Aslangul



results from rapid internal conversion following the creation of
a high-energy singlet excitation (singlet fission).

(ii) each member of the pair has a diffusive motion, independently of
the other; for simplicity, it is assumed that hopping can occur
between one site and its nearest-neighbours. The hopping prob-
ability per unit time is denoted as W and allows to define a dif-
fusion constant D=a2W, where a is the lattice spacing.

(iii) when the two triplets are located on the same site, they can
mutually annihilate to give a high energy singlet (triplet fusion).
This annihilation process is characterized by a constant prob-
ability per unit time denoted as A.

With these assumptions, it is easy to write down a master equation for
pn1n2

, the probability to find the two particles (triplets) located on sites n1

and n2 at time t. Standard arguments yield the following ($nm is the
Kronecker symbol):

d
dt

pn1n2
=&4Wpn1n2

+W[ pn1&1n2
+ pn1+1n2

+ pn1n2&1+ pn1n2+1]

&A$n1n2
pn1 n2

(2.1)

pn1n2
allows to find all the two-particle weighted sums describing the posi-

tions of the particles, such as:

(x1)= :
+�

n1=&�

:
+�

n2=&�

n2 pn1n2
(2.2)

(x1x2)= :
+�

n1=&�

:
+�

n2=&�

n1n2 pn1n2
(2.3)

Note that, at this point, one could be tempted to introduce the coor-
dinate of the center-of-mass, M=(n1+n2)�2, and the distance r=n1&n2

between the two particles. Although in the continuous approximation (see
below) this can be useful��but still remains a mere affair of taste��this change
of variables achieved in the lattice version does not help so much; it would
even somewhat obscure the analysis and furthermore would require an addi-
tional inverse transformation to get the desired probabilities.

Our aim is to obtain the solution of (2.1) at all times and to deduce
from it all quantities of physical interest. As always in pure (non disor-
dered) translationnally-invariant lattices, the easiest way to the full solution
is to find the characteristic (generating) function, which first contains all
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the information on the stochastic process at hand and, second, is certainly
the most convenient technique on a purely algebraic level. Indeed, (2.1) can
be easily solved by introducing the function f (,, �, t) defined as:

f (,, �, t)= :
+�

n1=&�

:
+�

n2=&�

ein1 , ein2 � pn1 n2
(t) (2.4)

allowing to find each pn1n2
by the inverse relation:

pn1n2
(t)=|

2?

0

d,
2? |

2?

0

d�
2?

e&in1 , e&in2 � f (,, �, t) (2.5)

or to find directly all the moments by successive derivations at , and�or
�=0. Obviously, if one is interested only in a few quantities, for instance only
in the total population N(t), a shorter route exists; indeed by summing (2.1)
side by side, one finds:

dN
dt

=&A :
+�

n=&�

pnn(t) (2.6)

This means that the total population can be obtained once all the diagonal
terms are known and also shows that the initial slope is finite and equal to
&A. Our goal here is to solve completely the present problem, not to focus
on some given quantities. Introducing the Laplace transform fL(,, �, z) of
f (,, �, t), it is readily seen that the former satisfies the following homo-
geneous integral equation:

zfL(,, �, z)& f (,, �, 0)

=&2W(2&cos ,&cos �) fL(,, �, z)&A |
2?

0

d,$
2?

fL(,$, ,+�&,$, z)

(2.7)

Equation (2.7) yields a homogeneous Fredholm integral equation with a
degenerate kernel;(16) as such, its solution can be readily obtained in a
closed form. By labelling n=0 the site where the pair of triplets arises at
t=0, one has f (,, �, t=0)=1 and, with such an initial condition, the solu-
tion of (2.7) writes:

fL(,, �, z)=
1

1+[+�(R[(,+�)�2, Z)])]
1

z+2W(2&cos ,&cos �)

(2.8)
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with

R(x, Z)=(Z2+2Z+sin2 x)1�2, +=
A

4W
Z=

z
4W

(2.9)

Note that the expression (2.8) is of the typical form found in a large variety
of (linear) problems incorporating a contact interaction or a local defect
(often called Koster�Slater formula in condensed matter literature); it also
resembles, for obvious reasons, to the Laplace transform of the charac-
teristic function for a single particle on a lattice with a partially absorbing
barrier located at the origin. In the following, all multiform functions are
continuously defined by analytical continuation, starting from the branch
which assumes real values on the real positive semi-axis.

Equations (2.8) and (2.9) fully solve the present 1-d problem in the
Laplace representation. This being achieved, it is easy to go back to physi-
cal expectation values. The simplest one, and also of great physical interest,
is the total triplet pair population, N(t), given by

N(t)= :
+�

n1 , n2=&�

pn1n2
# f (,=�=0, t) (2.10)

and is now known by its Laplace transform fL(,=�=0, z):

N(t)=|
C

dz
2i?

NL(z) ezt NL(z)=_z \1+
A

- z2+8zW+&
&1

(2.11)

An explicit expression for N(t) can be found as usual by deforming the con-
tour C and by first calculating the residue at the simple pole z&=&4W&
- 16W 2+A2. Obvious manipulations on the remaining contour integral
allow to eventually write the exact expression of N(t) as the following
(T=4Wt):

N(t)=
+2 e&(1+- +2+1) T

+2+1+- +2+1
+

2+
? |

?

0

cos2(x�2)
+2+sin2 x

e&2T sin2(x�2) dx (2.12)

#
+2 e&(1+- +2+1) T

+2+1+- +2+1
++ e&T 1+(d�dT )

+2+1&(d 2�dT 2)
I0(T ) (2.13)

where I0 is the ordinary modified Bessel function. This exact result first
shows that, for d=1, and \+>0, N(t) goes to zero at infinite times, a limit
which is reached in fact for any dimensionality d�2 (see below). This is
closely related to the Polya� problem: in one spatial dimension, a single
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random walker goes back to its starting point with probability one, although
the return time, being distributed according a Smirnov law, (11) is infinite on
the average.

In expressions (2.12), (2.13), the first term in the RHS is the residue
originating from the pole z& and is a short exponential transient expressing
the fact that on a time scale short as compared to the diffusion time, the
two triplets simply annihilate each other locally at a constant rate A. It
results a finite initial slope (see Eq. (2.6)), a fact which played a crucial role
for determining explicitly the first good estimates of W and A for PDA
chains.(1) When A<<W (small annihilation rate and fast diffusion), this
first term is negligible at any time and the second one can be given a quite
good approximate expression in terms of the error function 8, namely:

N(t)&[1&8(- A2t�(8W ))] eA2t�(8W ) (0<+<<1) (2.14)

As a consequence, N(t) decays as t&1�2 at large times. On the contrary, for
A>>W, one has approximately:

N(t)&
+ e&At

++1
+

1
+

e&4Wt _1+
1

4W
d
dt& I0(4Wt) (+>>1) (2.15)

This again yields a t&1�2 decay at (very) large times, once the transient
exponential regime B e&At has disappeared. Note however that this power-
law, characteristic of 1d-diffusion in presence of annihilation or with an
absorbing barrier in the space continuous framework, (9) is relevant only
once N(t) achieves very small values; obviously, when A>>W, the prob-
ability is quite small that each triplet can in fact undergo a diffusive walk.
Indeed, for any positive value of +, a cross-over occurs, separating an
initial exponential decay from an asymptotical power-law behaviour (see
Fig. 2); at intermediate times, and on almost the whole experiment time
interval, the decay is neither exponential nor governed by a single expo-
nent. The precise asymptotic t&1�2 law can be found by an asymptotic
analysis of the integral in (2.12), which leads to the following expansion:

N(t)t�8W
?A2 t&1�2 _1&�8?W

A2 t&1�2+ } } } & \t>>
W
A2+ (2.16)

This entails that the pure t&1�2 decay at large times is realized for t
much larger than W�A2, all the more since the correction has itself a quite
slow decay. The above expansion allows to identify the relevant time scale
{ in one dimension:

{=
8W
A2 =

8D
(aA)2 (2.17)
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Fig. 2. Theoretical decay (solid line) of the triplet pair population in the one-dimensional
case (Eq. 2.10), as a function of T=4Wt for A�4W=0.5; the dotted line is the pure exponential
decay arising from the pole z& , whereas the dashed line is the dominant term in Eq. (2.14).

Fig. 3. Same as Fig. 2 but with a double logarithmic scale.
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The characteristic function (2.8) is indeed the full solution of the present
problem since all the probabilities pn1n2

(t) can be theoretically extracted
from it by Laplace inversion and use of the Fourier relation (2.5). As an
example, straightforward manipulations yield the following for the two-
particle survival probability at the origin:

p00(t)=e&4Wt |
C

dZ
2i?

e4WtZ |
?

0

dx
?

1

++- Z2&cos2 x
(2.18)

Explicit Laplace inversion yields (T=4Wt):

p00(t)=e&T :
+�

k=0

:
+�

r=0

(&+)r

(k!)2 \T
2 +

r+2k 1 (k+ 1
2)

1 ((r+1)�2) 1 ((r�2)+k+1)
(2.19)

where 1 is the Euler function. The first term r=0 clearly produces(17, 18, 20)

e&T I 2
0(T ), as it must. The asymptotic behaviour of p00(t) follows:

p00(t)t
1

?A2t2 (2.20)

as contrasted to tt&1 in the absence of annihilation.
Obviously, the contact interaction between the particles induces

correlations between the motion of the latter, which are most simply
measured by the normalized correlator:

C(t)=
(x1x2)

(x2
2)

(2.21)

where (x1 x2) and (x2
1) are defined in Eqs. (2.2) and (2.3). The numerator

is readily obtained from the full characteristic function (2.8): its Laplace
transform is the opposite of the coefficient of the product ,� in the expan-
sion of fL(,, �, z) near ,=�=0, whereas the denominator is related to the
coefficient of ,2 in the same expansion. Asymptotic analysis shows that
C(t) tends toward a finite constant:

C(t)t & 1
3 (t>>W &1, A&1) (2.22)

which means that strong correlations persist for ever, by a combined effect
of interaction and low dimensionality.
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The characteristic function (2.8) also allows to find the characteristic
function f (,, t) of the marginal one-particle probabilities pn(t) defined as:

pn(t)= :
+�

n2=&�

pnn2
(t) (2.23)

f (,, t) is equal to f (,, �=0, t). Laplace inversion yields:

f (,, t)=e&T sin2(,�2)[1&+H(T )] (2.24)

where H(T ) denotes the function:

H(T )=- ? :
+�

r=0

(&+)r

1 ((r+1)�2)[2 cos(,�2)]r�2

_|
T

0
dT $ e&T $ cos2(,�2) T $r�2 Ir�2[T $ cos(,�2)] (2.25)

By successive derivations at ,=0, Eq. (2.24) provides, via their Laplace
transforms, all the moments of the marginal distribution. For instance, the
Laplace transform of the marginal mean square dispersion is given by
(Z=z�4W ):

m2L(z)=
1

16W
+(3+2Z)+2Z1�2(Z+2)3�2

Z3�2(Z+2)1�2 [++Z1�2(Z+2)1�2]2 (2.26)

leading to the asymptotic behaviour:

m2(t)t6 �2
?

W 3�2

A
t1�2 (2.27)

The conditional ratio m2 �N is the mean square displacement, given the pair
is still alive at time t; taking Eqs. (2.27) and (2.16) into account, one
recovers the ordinary linear variation at large times. In addition, Eq. (2.27)
shows that the typical distance dtyp travelled by one particle asymptotically
grows as t1�4:

dtyp(t)t\72W 3

?A2 +
1�4

t1�4 (2.28)

This slower increase in time, as compared to t1�2 in the absence of
annihilation, merely expresses the fact that a mortal walker travels a
smaller distance than a walker having an infinite lifetime.
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III. THE TWO-DIMENSIONAL CASE

For d=2, let us denote by pn1m1n2m2
the probability to find a pair at

sites with coordinates (n1 , m1) and (n2 , m2) on a square lattice of lattice
spacing a. The master equation now reads:

d
dt

pn1m1n2m2
=&8Wpn1m1n2m2

+W[ pn1&1m1n2m2
+ pn1+1m1n2 m2

+ pn1m1&1n2m2
+ pn1m1+1n2m2

+ pn1 m1n2&1m2

+ pn1m1n2+1m2
+ pn1m1 n2m2&1+ pn1m1n2m2+1]

&Apn1m1n2m2
$n1 n2

$m1m2
pn1m1n2 m2

(3.1)

together with the initial condition pn1m1n2 m2
=$n10$m10 $n20$m20 . The

generating function f (,1 , �1 , ,2 , �2 , t) is now:

f (,1 , �1 , ,2 , �2 , t)= :
n1m1

:
n2m2

ei(n1,1+m1�1) ei(n2,2+m2�2) pn1m1n2 m2
(t) (3.2)

A straightforward calculation yields the Laplace transform of f,
fL(,1 , �1 , ,2 , �2 , z), found under the following form generalizing Eq. (2.8)
for d=2:

fL(,1 , �1 , ,2 , �2 , z)=G(,1 , �1 , ,2 , �2 , z) {1+
A

4?W[!(,, �, Z)]1�2

_K _cos(,�2) cos(��2)
!(,, �, Z) &=

&1

(3.3)

where K is the elliptic function of the first kind(17) and with:

G(,1 , �1 , ,2 , �2 , z)=
1

z+2W(4&cos ,1&cos �1&cos ,2&cos �2)
(3.4)

!(,, �, Z)=(Z+1)2&
1
4

[cos(,�2)&cos(��2)]2 ,=,1+,2

�=�1+�2 Z=
z

8W
(3.5)
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Note that all the quantities arising in the two-dimensional lattice ver-
sion are well-defined, as opposed to their analogous in the continuum limit
(see Section IV). The knowledge of the characteristic function of the two-
particle probability distribution, Eq. (3.3), fully solves the present problem
in the Laplace representation. The total pair population N(t) can be
quickly found from this result; its Laplace transform follows from Eqs.
(3.3)�(3.5):

NL(z)=
1
z {1+

A
4?W(1+Z)

K _ 1
(1+Z)2&=

&1

(3.6)

After performing Laplace inversion, the following behaviours are obtained.
At the very beginning, the total population decreases as e&At. After this
first transient exponential regime, approximate expression of K(x) for
|x| &1 produces the following expression of N(t) in terms of the Ramanujan
integral:

N(t)&
8?W

A |
+�

0
dx

e&64Wtx

x[(ln x)2+?2]
(t>>A&1) (3.7)

This expression describes the long-lasting cross-over between the initial
exponential regime and the final asymptotic regime:

N(t)t
8?W

A ln(64Wt)
(t>>A&1, W &1) (3.8)

Again, N(t) eventually goes to zero at infinite times, but infinitely slowly.
This ultra-slow convergence toward the vanishing value indicates that d=2
is the marginal dimensionality above which N(t) decays to a finite value at
infinite times.

Equations (3.3)�(3.5) allow to find all the moments of the two-particle
distribution, as well as, for instance, the characteristic function of the one-
particle distribution defined as:

pnm(t) = :
n2m2

pnmn2m2
(t) (3.9)

The Laplace transform of the latter is given by:

fL(,, �, z)=
1�[z+2W(2&cos ,&cos �)]

1+
A

4?W[!(,, �, z)]1�2 K _cos(,�2) cos(��2)
!(,, �, z) &

(3.10)
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This readily yields the Laplace transform of the second marginal moment
m2L(z) along anyone of the two principal directions of the lattice:

m2L(z)=
1�z

1+
A

4?W (Z+1)
K _ 1

(Z+1)2&

__W
z

&
A

32?W

K$ _ 1
(Z+1)2&

Z+1+
A

4?W
K _ 1

(Z+1)2&& (3.11)

Asymptotic analysis of this linear mean square dispersion gives:

m2(t)t
8?W 2

A
t

ln(64Wt)
(3.12)

This is a marginal subdiffusif behaviour (comp. Eq. (2.27)), resulting from
the fact that, here again, the particles eventually disappear, although
infinitely slowly. Thus, for d=2, the typical distance travelled by anyone of
the particles asymptotically grows as:

dtyp(t)t�8?W
A _ Wt

ln(64Wt)&
1�2

(3.13)

The correlations between particles (along e.g., the x-axis) can be
measured as usual by the weighted crossed-products deduced from the
expansion of fL(,1 , �1=0, ,2 , �2=0, z) near ,1=�1=0. The simplest
one, (x1x2), here indeed vanishes, since the preceding fL contains only the
combination (,1+,2)4. This expresses the physical fact that, due to
increased dimensionality, spatial correlations are certainly less strong than
for d=1.

IV. THE SPACE CONTINUOUS LIMIT

For completeness, the space continuous limit will now be discussed.
If a is the order of magnitude of the lattice spacing and if {diff denotes the
diffusion time, wave vectors k and time-conjugate Laplace variables z are
physically sensible with respect to the underlying discrete space only if they
satisfy k<<a&1 and |z|<<{&1

diff .
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The continuous limit can be taken from the above lattice results; as
usual, setting:

A=
A�
ad W=

D
a2 (4.1)

and by formally taking the limit a � 0. For d=1, starting from Eqs. (2.8),
(2.9), one obtains the Laplace transform of the characteristic function of
the two-particle density, f� L(k1 , k2 , z):

f� L(k1 , k2 , z)=
1

1+
A�

- 8D

1
[z+(D�2) K2]1�2

1
z+D(k2

1+k2
2)

(4.2)

where K=k1+k2 . All physical quantities in the continuous version can be
derived from Eq. (4.2). First, Laplace inversion with the help of the the
Efro� s theorem(19) yields:

N(t)=et�{[1&8(- t�{)] {=
8D
A� 2 =

8W
A2 (4.3)

By comparing with Eq. (2.14), one sees that the exact result of the present
continuous version coincides with the (approximate) discrete result only in
the limit +<<1. This is easily understood: when the annihilation time is
much longer than the diffusion time, each particle can move on a rather
long distance and the effect of the underlying lattice is in some way washed
out. The initial slope of N(t), as given by Eq. (4.3), is infinite; this fact,
characteristic of the continuous limit, is an example of the unability of the
latter to reproduce relevant microscopic features properly revealed by high-
resolution experiments. On the other hand, Eq. (4.3) yields exactly the
same long-time behaviour as Eq. (2.16). From Eq. (4.2), one also readily
obtains the the one-particle characteristic function, from which all
moments can be deduced; as an example, the second one is:

m2(t)=D(t+{) et�{[1&8(- t�{)]&D{+2D �{t
?

(4.4)

At very large times, this yields exactly the same asymptotic behaviour as in
the lattice version, Eq. (2.27).

Of course, results in the continuous framework can be directly found
by solving the diffusion equation, either by separation of variables and
forming the proper combination of eigenmodes, or by going to the center-
of-mass frame; in this last formulation, one recovers the classical problem
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of a fictitious particle with a imperfectly absorbing barrier, (4�9) the diffusion
constant D playing the role of an inverse mass. In one way or another, for
d=1, the two-particle density is obtained as:

P(x1 , x2 , t)=
1

- 2?Dt
e&(x1+x2)2�(8Dt) |

+�

&�

dk
2?

k
k&iA� �(4D)

eik |x1&x2 | e&2Dk2t

(4.5)

where the prefactor represents the free diffusion of the center of mass. Note
that due to the singularity |x1&x2 |��which reflects the zero-range contact
interaction in one dimension��the Fourier transform of P cannot be simply
be read from the above expression.

Obviously, due to the interaction via the annihilation process,
P(x1 , x2 , t) is not the product of two functions, one for each coordinate.
Equation (4.5) indeed displays the fact that P is a linear combination of
such products, weighted by k�[k&iA� �(4D)] (where the sign of A� is essen-
tial). In this sense, it would be incorrect to consider the problem as a single
particle one: the separation of the center-of-mass motion is trivial in the
sense that it happens as the consequence of space homogeneity, but this
center-of-mass, itself having a diffusive motion (not a purely kinematical
one), does participate to the spreading in such a way that correlations are
always present.

Analogous calculations can be done for d=2, but a regularization has
to be achieved due to ultraviolet divergencies. For instance, one now has
(K9 =k9 1+k9 2):

f� L(k9 1 , k9 2 , z)=
G(k9 1 , k9 2 , z)

1+A� |
R2

d 2k$
(2?)2 G(k9 $, K9 &k9 $, z)

(4.6)

G(k9 1 , k9 2 , z)=
1

z+D(k9 2
1+k9 2

2)

Since the integral is logarithmically divergent, a cut-off kcta&1 has to be
introduced; its precise value can be obtained from the lattice results by
taking the limit a � 0 in Eq. (3.3) and by using:(17)

K \ 1
[1+a2z�(8D)]2+& ln \8 - D

a - z + (4.7)

Comparing now Eqs. (3.3) and (4.6), one precisely finds:

kc=
4 - 2

a
(4.8)

234 Aslangul



This choice insures that the continuous approximation possesses the same
asymptotical behaviour as the lattice version. With this regularization, one
has (*=A� �(8?D), K9 =k9 1+k9 2):

f� L(k9 1 , k9 2 , z)=
G(k9 1 , k9 2 , z)

1+* ln[1+2Dk2
c �(z+DK9 2�2)]

(4.9)

Laplace inversion then gives the following exact expression for the pair
population in the continuum limit, valid at any times, (T=2Dk2

c t) for the
two-dimensional case:

N(t)=
1

*(e1�*&1)
exp \&

T
1&e&1�*+

+* |
1

0

d\
\

e&\T

[1+* ln((1�\)&1)]2+*2?2 (4.10)

Asymptotic analysis with the cut-off given by Eq. (4.8) exactly reproduces
the Ramanujan integral as in Eq. (3.8).

The continuous limit also allows to formally generalize the above
results for any real d�0. For instance, NL(z) is given by:

NL(z)=
1
z

1

1+A� |
R d

d dk$
(2?)d

1

z+2Dk9 $2

(4.11)

where the integral has to be regularized with a cut-off kc when d�2. In this
case, one finds:

NL(z)=
1
z {1+

A� kd&2
c �D

2d+1?d�21 (d�2) _
2

d&2
F(1, 1; 1&d�2; 2&d�2, &Z)

+
?

sin ?d
Zd�2&=

&1

(4.12)

where F is the hypergeometric function(17) and Z=z�(2Dk2
c). For Z<<1,

one has:

NL(z)&
1
z

1

1+
&

2d?d�2(d&2) 1 (d�2) _1+
?(d&2)
2 sin ?d

Zd�2&
\&=

A� kd&2
c

D +
(4.13)
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File: 822J 224418 . By:XX . Date:07:01:99 . Time:11:46 LOP8M. V8.B. Page 01:01
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Fig. 4. Variation of the final value N�(d ) of the pair population as a function of the dimen-
sionality d (Eq. (4.14)). N�(d ) identically vanishes for d�2. Each curve is labelled by the
dimensionless parameter n (Eq. (4.13)).

From this, one obtains the result:

N�(d )# lim
t � �

N(t)=
1

1+:
:=

&
2d?d�2(d&2) 1 (d�2)

(4.14)

Thus, for any dimensionality d>2, the total pair population does not
decay toward zero at infinite times. N�(d ) is plotted in Fig. 4 for various
values of the dimensionless parameter &.

Note that : diverges when d � 2; using the jargon of phase transitions,
N�(d ) can be viewed as the order-parameter of a second-order transition,
d &1 playing the role of the temperature. Just above d=2, one has:

N�(d )t
4?W

A
(d&2)=

4?Dad&2

A�
(d&2) (4.15)

implying a ``critical exponent'' equal to 1.
The approach to this final value is obtained by asymptotic analysis of

N(t) based on Eq. (4.12). The relevant time scale can be found by dimensional
analysis, leading to the generalization of the time { previously introduced,
Eq. (2.17), expressed with either parameters (lattice or continuum versions):

{d=
A� 2�(d&2)

(8D)d�(d&2)=
A2�(d&2)

(8W )d�(d&2) (4.16)
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Fig. 5. Variation as a function of time of the pair population in the three-dimensional case,
with :=1; the final value N� (see Eq. (4.14)) is here equal to 0.5.

A straightforward calculation leads to:

N(t)t
1

1+: _1+
2?&d�2

(1+:)(d&2) \
{d

t +
(d�2)&1

& (t>>{d) (4.17)

displaying the fact that the exponent characterizing the final regime con-
tinuously depends on the dimensionality.

As an illustrative example, N(t) is plotted in Fig. 5 in the three-dimen-
sional case, displaying the finite limiting value given by Eq. (4.14).

For d a positive real number smaller than 2, no cut-off is necessary
and NL(z) is given by:

NL(z)=
1
z

1
1+Cd ({dz)(d�2)&1 Cd=?&(d�2)1 (1&d�2) (4.18)

By incorporating the time {d (Eq. (4.16)), one obtains the exact following
expression:

N(t)=
1
?

sin \?d
2 + |

+�

0
d\

Cd\&d�2 e&\t�{d

\2&d&2Cd cos((?d)�2) \1&d�2+C 2
d

(4.19)
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which has the asymptotic behaviour:

N(t)tsin \?d
2 + \

{d

?t+
1&d�2

#? (d�2)&1 sin \?d
2 +

(8Wt)d�2

At
(4.20)

The last form displays the two relevant physical quantities: (Wt)d�2, which
is the typical d-dimensional volume (in lattice units) swept by the diffusing
particles at time t and the product At=t�A&1, which is the order of
magnitude of the number of possible annihilations up to time t.

Thus, for any positive real d{2, the population decays according to
a power-law at large times:

N(t)tN�+#d \{d

t +
;(d )

(4.21)

where #d is a d-dependent constant; N� is given by Eq. (4.14) for d>2 and
vanishes for d�2. The exponent ;=|1&d�2| varies continuously with the
dimensionality and vanishes for d=2, in which case, according to Eq. (3.8),
N(t) has a logarithmic decay toward zero.

It is interesting to note that the above results can even be extrapolated
to zero-dimensional space. In such a case, Eqs. (4.16) and (4.18) yield an
exponential decay at all times:

N(t)=e&A� t (4.22)

This was an expected result: in zero space dimension, the two triplets can-
not diffuse (and indeed the diffusion time linked to D goes out of the
problem, see Eq. (4.16)); they can only annihilate in situ, leading to a plain
exponential decay. Note however that the transition to d=0 is quite
singular: for any d{0 (but d<2), the Laplace inversion of NL(z) only
involves the integral in the RHS of Eq. (4.19), arising from the cut of the
integrand��no pole does exist. At precisely d=0, the cut disappears,
whereas a pole spontaneously arises at z=&A� , which the common limit of
poles located in other Riemann sheets.

V. SUMMARY AND CONCLUSIONS

A lattice model, successful for describing motion and annihilation of
triplet excitations in linear organic polymers, (1) was analyzed in details and
generalized in dimension d=2, examplifying the importance of the latter,
as it is in random walk problems such as Polya� 's one. The problem was
fully solved in each case by finding the characteristic functions of the two-
and one-particle probability distributions and by calculating explicitely
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some quantities of physical interest such as the total population and the
typical distance travelled by one particle; the latter was shown to behave
as t1�4 for d=1 and as t�ln t in the marginal d=2 case. In addition, it was
shown that strong statistical correlations persist for ever in the one-dimen-
sional case, due to a combined effect of interaction and low-dimensionality.

The relations between the above treatment and the simplified con-
tinuum approximation used in previous works(4�7, 9) were analyzed, having
in mind the availability of experimental data obtained with high-time
resolution; such a discussion provides an illustration of the obvious fact
that continuum limit is unable to handle physically relevant features of the
significant ``transient'' dynamics, especially when the annihilation and the
diffusion times are of the same order of magnitude, which is the case for the
organic polymers studied. First, the initial linear decay turns out to play a
crucial role for determining the absolute magnitude of the annihilation
rate, one of the two basic timescales of the problem. Second, the cross-over
between quasi exponential decay and the final power law is so much long-
lived that the latter, easily obtained by hand-waving scaling arguments, is
of very little physical interest in view of the achieved experiments. All this
motivates and justifies a full complete analytical treatment at all times in the
lattice framework. In addition, the lattice version also appears as worthy
when, as it is the case for d�2, the continuum version is ill-conditionned,
pleagued as it is by ultra-violet divergencies, and requires regularization.

As by-products of the solution at all times, asymptotic results pre-
viously obtained in other contexts were recovered. Indeed, the limiting
value N� of the survival population is strongly dependent on the dimen-
sionality of space: for any real d�2, the two excitations mutually
annihilate sooner or later and the population goes to zero at infinite times.
d=2 turns out to be the marginal dimensionality: as soon as d>2, N� is
finite and is an increasing function of d (see Fig. 4). As a whole, N� looks
like the order parameter of a second-order transition, d playing the role of
an inverse temperature. The precise asymptotic regime was obtained in all
cases; for 0<d�2, the vanishing limit is reached according to a power-law
in time, with an exponent varying continuously with d (tt&(1&d�2)). The
d-dependence of the exponent arises from the fact that the volume visited
by a diffusing particle in d spatial dimension is proportional to td�2 (see
Eq. (4.20) and the subsequent comment). For d>2, the approach to the
finite final value again obeys a law of the same type (tt(1&d�2)). As a
whole, at large times (as precisely stated in the text), the total population
N(t) is such that:

N(t)tN�(d )+#d \{d

t +
;(d )

(5.1)
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where N� is plotted in Fig. 4, {d is the relevant d-dimensional time scale
(see Eq. (4.16)) and where the exponent ;=|1&d�2|; #d is a d-dependent
constant. Not surprisingly, the decay toward zero is of the form (ln t)&1 in
the marginal case d=2. Finally, the results can be extrapolated to d=0
and yield a pure exponential decay for all times, as it must.
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